REQUIREMENTS FOR IMPROVED PHA METHODS

by Paul Baybutt

paulb@primatech.com
www.primatech.com

Presented at the
American Institute of Chemical Engineers
10th Global Congress on Process Safety
New Orleans, Louisiana
March 30 - April 2, 2014
OVERVIEW

- PHA weaknesses
- HAZOP study weaknesses
- Criteria for new and improved methods
- Possible ways forward
PHA WEAKNESSES

- Current PHA methods suffer from two types of weaknesses
 - Inherent weaknesses
 - Weaknesses in how PHA is practiced
 - E.g. inadequate team composition
- Focus here is on the former
- Individual PHA methods offer different advantages and disadvantages
- Current PHA methods share a number of weaknesses
Identifying and understanding these weaknesses assists in the development of new and improved approaches.

Knowledge of weaknesses also allows PHA teams to compensate for them:
- To the extent possible.
WEAKNESSES IN PHA METHODS

- Subjective judgment
- Only departures from design intent are addressed
- Ability to address all aspects of design intent
- Scenario detail
- Identification of human failures
- Root causes of hazard scenarios
- Ability to identify multiple failures
- Consideration of dependent failures
- Consideration of domino effects
- Identification of worst-consequence rather than worst-risk scenarios
- Focus on individual parts of a process
- Uniqueness of process subdivision
- Utility and support system failures
- Treatment of modes of operation
- Treatment of non-steady-state processes
- Addressing human factors issues
- Addressing facility siting issues
- Interactions between processes
- Conservative assumptions
- Prediction of real-world accidents
DEPARTURES FROM DESIGN INTENT

- PHA focuses on looking for ways the process may deviate from the design intent.
- Does not evaluate the adequacy of the design intent itself.
- Verification of the design intent is part of a formal design review.
 - Outside the scope of PHA studies.
- New designs may be hazardous.
 - Even within the envelope of the design intent.
ADDRESS ALL ASPECTS OF DESIGN INTENT

- Hazard scenarios arise when there is a deviation from the design intent for a process
- There are many aspects of design intent
- Significant challenge to identify those aspects for which deviations will result in scenarios of concern
ASPECTS OF DESIGN INTENT

- Equipment
- Process materials
- Materials of construction
- Conditions
- Properties
- Operations
- Actions
- Reactions
- Functions
- Specifications
- Environment
- Locations
- Positions
- Elevations
- Measurements
- Controls
- Software
- Maintenance
- Calibration
- Testing
- Sampling
- Services / utilities
- Communications
- Timing
- Sequence and order
ROOT CAUSES OF HAZARD SCENARIOS

- Usually, PHA does not address root causes of scenarios
 - Such as human and organizational factors
- Typically, practitioners identify immediate or basic causes
- No consistent practices on the level of causality that should be used
- Deeper that PHA teams probe the cause hierarchy, the more time-consuming the study becomes
- Key issue is how deep should teams go in order to identify needed risk reduction measures
HIERARCHY OF CAUSALITY

Example

Pump fails off

Level 1
Immediate

Level 2
Basic
Mechanical failure

Level 3
Underlying
Lack of preventive maintenance (PM)

Level 4
Root
No accountability
IDENTIFICATION OF WORST-CONSEQUENCE RATHER THAN WORST-RISK SCENARIOS

- Usually, scenario severity values are estimated assuming all safeguards fail
 - Worst-consequence scenario

- Worst-consequence scenario may not be the worst-risk scenario for the same initiating event
 - Often, practitioners implicitly assume the two are the same
EXAMPLE OF WORST-CONSEQUENCE VERSUS WORST-RISK SCENARIO

Success

PSV

Operator response

Deluge system

Regulator Failure

Success

Failure

Worst-consequence scenario

Tolerable

Worst-risk scenario

Decreasing severity

Increasing severity

No adverse consequence

No adverse consequence

????
FOCUS ON INDIVIDUAL PARTS OF A PROCESS

- Usually the process is divided into sections
 - Focus the analysis
 - Make the study manageable

- Such process subdivision may result in missing scenarios that involve multiple parts of the process
 - E.g. Simultaneous failure of two valves in different nodes

- Some initiating events may affect the entire process producing a global or system scenario
 - E.g. Flooding and the loss of utilities such as electric power
HAZOP STUDY METHOD

- Most commonly-used PHA method
- Viewed by many practitioners as the most thorough and complete PHA method
- HAZOP shares the weaknesses described
 - Also has its own weaknesses
HAZOP STUDY WEAKNESSES

- Incomplete consideration of design intent
- Compound deviations
- Counter-intuitive inductive / deductive starting point
- Operability issues are included
- Difficulty in focusing on specific hazard types
- Equipment focus
- Technical vocabulary
- Studies are lengthy
- Presentation of results
HAZOP shares with other PHA methods the difficulty of addressing all key aspects of design intent.

Use of a short checklist in HAZOP to select parameters to generate deviations exacerbates the problem.

- Inhibits consideration of other aspects of node intention.

Unfortunately, practitioners may not consider parameters that are not on the checklist.
INCOMPLETE CONSIDERATION OF DESIGN INTENT IN HAZOP (CONTD.)

- Consideration of additional aspects of design intent is difficult
 - Like gazing into a crystal ball and trying to predict the future
 - Which aspects of design intent, if addressed, will generate scenarios of concern
HAZOP STUDIES ARE LENGTHY

- HAZOP studies take more time than other methods
- HAZOP inefficiencies include:
 - Identification of operability scenarios when they are not desired
 - Consideration of process deviations that do not result in scenarios of concern
- Lengthy studies have an adverse impact on team performance
 - Participants become fatigued and jaded
- HAZOP is theoretically attractive but practically limited
ADMINISTRATIVE CRITERIA FOR NEW AND IMPROVED METHODS

- Appropriate for the process industries
- Meet regulatory requirements and industry practices, codes and standards
- Non-proprietary
- Ease of understanding and application by participants
- Team approach
- Facilitator
- Brainstorming scenarios

- Consistency
- Structure
- Logical
- Presentation of results
- Ease of updating and revalidating studies
- Ease of use for other process safety purposes
- Conversion of previous studies
- Continuous improvement
TECHNICAL CRITERIA FOR NEW AND IMPROVED METHODS

- Able to address all types of hazards
- Tailored to hazards of interest
- Exclusion of extraneous scenarios
- Adjustable to the complexity and circumstances of the process
- Reliance on subjective judgment
- Completeness of scenario identification
- Coverage of design intent
- Level of detail
- Sequential order of events
- Robust to team inadequacies
- Efficiency of scenario identification
- Robust and meaningful scenario risk estimation
- Specific measures for risk reduction
- Use throughout the process life cycle
- Analysis of process changes
RELIANCE ON SUBJECTIVE JUDGMENT

- Engineering judgment is a key aspect of PHA studies
- Subjectivity introduces uncertainty and often conservatism into the analysis
- PHA methods should minimize the need for subjective judgment
 - Reduce uncertainty in results
 - Avoid overly-conservative conclusions
Attempts have been made to automate HAZOP studies using computer software

- No completely successful approach has yet been devised
- Questionable whether the creativity of people can be replaced by computer algorithms
 - At least at this time
- Regulatory acceptance of such studies is likely to be an issue
ROBUST TO TEAM INADEQUACIES

- PHA study results are subject to team member bias, motivation, experience, knowledge and creativity
- Study success depends on the interactions of the team members
- Unrealistic to expect that a PHA team will function in a perfect way
 - Owing the nature of people
POSSIBLE WAYS FORWARD – SEMI-AUTOMATED STUDIES

- Program PHA software:
 - Use a database of information from studies that have been conducted
 - Suggest worksheet entries
 - Identify missing entries
 - Check worksheet entries for compliance with study guidelines
POSSIBLE WAYS FORWARD – TEAM TRAINING

- Train team members in scenario recognition
 - Not just the mechanics of PHA
- Be able to relate what they know of incidents they have experienced to the format in which hazard scenarios are identified and recorded
- Real-world examples should be used
 - Preferably from the facility where participants work
 - Videos from the CSB can be used to bring scenarios to life
POSSIBLE WAYS FORWARD – TEAM TRAINING (CONTD.)

- Participants must understand important concepts for hazard scenarios in the context of real-life incidents such as:
 - Multiple failures
 - Domino effects
 - Dependent and common cause failures
 - Latent failures and enablers
- Otherwise PHA studies can seem like theoretical exercises
CONCLUSIONS

- Current PHA methods suffer from a variety of weaknesses
 - Almost certainly results in incomplete studies with hazard scenarios being missed
- HAZOP shares these weaknesses
 - Also has weaknesses of its own
- Criteria proposed for new and improved methods
- Suggestions made for the way forward