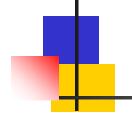
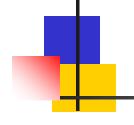

LESSONS LEARNED IN CONDUCTING CYBER SECURITY VULNERABILITY ANALYSIS



by Paul Baybutt, Primatech Inc.

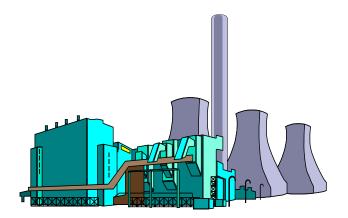
Presented at the ISA Expo Technical Conference on Manufacturing & Control Systems Security, Chicago, October 25, 2005

> <u>paulb@primatech.com</u> <u>www.primatech.com</u>

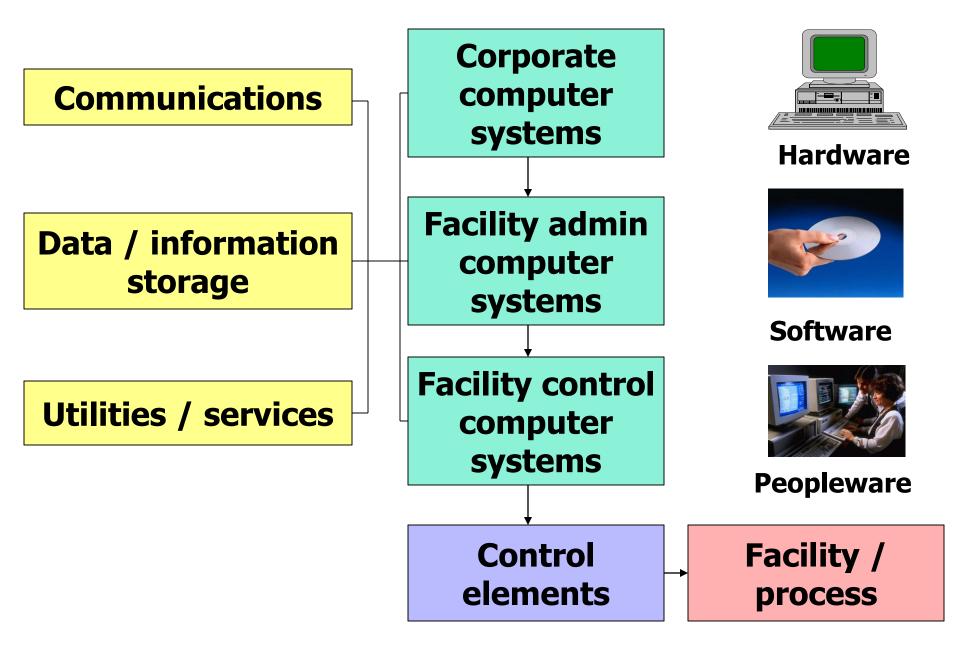


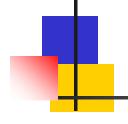
OVERVIEW

- Cyber security and the protection of computer systems
- Managing cyber security and risk assessment
- Cyber security vulnerability analysis (SVA)
- Lessons learned

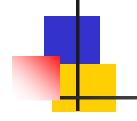


CYBER SECURITY FOR MANUFACTURING AND PROCESS PLANTS

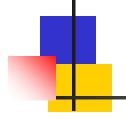

ASSETS	INTENTS
Stored information	Obtain, corrupt, damage, destroy or prohibit access
Computer systems	Disable
Controls	Manipulate



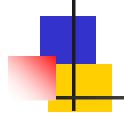
PROTECTION OF COMPUTER SYSTEMS




MANAGING CYBER SECURITY


- American Chemistry Council's (ACC's)
 Responsible Care® Security Code of
 Management Practices
 - Requires ACC members to perform cyber SVAs for their facilities
 - Part of a risk-based management system

MODEL FOR SECURITY RISK ASSESSMENT



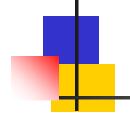
COMPUTER SYSTEMS TO CONSIDER

- Manufacturing and process control
- Production management
- Safety systems operation
- Access control
- Information storage
- Data historian
- Financial systems
- Order entry

- Inventory management
- Warehousing
- Maintenance
- E-commerce
- Communications
- Power and other utilities
- Transportation
- Etc.

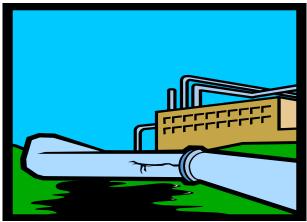
POSSIBLE ATTACKERS - INTERNAL

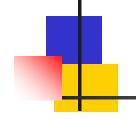
- Disgruntled employees
- Former employees
- Contractors
- Vendors
- Customers
- Visitors
- Etc.



POSSIBLE ATTACKERS - EXTERNAL

- Hackers
- Terrorists
- Criminals
- Competitors
- Activists
- Etc.




POSSIBLE INTENTS

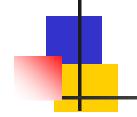
- Damage
- Destruction
- Disruption
- Denial of use
- Theft
- Diversion
- Manipulation
- Contamination

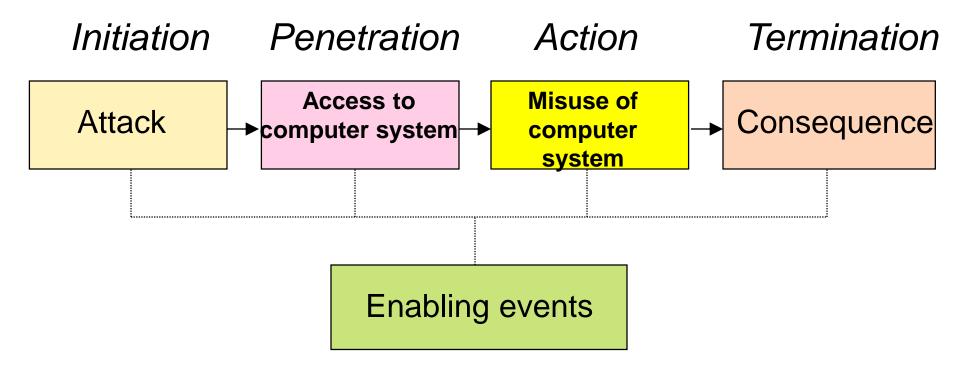
- Spoiled products
- Shutdown
- Release
- Fire
- Explosion
- Runaway reaction
- Etc.


Copyright © 2005, Primatech Inc., All rights reserved.

SECURITY VULNERABILITY ANALYSIS (SVA)

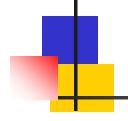
- Identifies ways in which deliberate acts could cause harm (threat scenarios)
 - How flaws or weaknesses expose a system to attack




VULNERABILITIES IN COMPUTER CONTROL SYSTEMS

- Network access
- Dial-up modems
- Unauthorized HMI use
- Wireless networks
- Partner networks
- Inadequate physical protection
- Unattended workstations
- Accessible cabling
- Etc.

ELEMENTS OF A CYBER THREAT SCENARIO

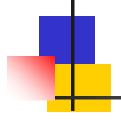


"The only real mistake is the one from which we learn nothing."

John Powell

CSVA-SB WORKSHEET

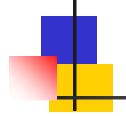
SECTOR: (1) PLANT COMPUTER SYSTEMS										
			COUNTERMEACURES			Б	DECOMMENDATIONS	DV		
THREATS		CONSEQUENCES					RECOMMENDATIONS			
Hackers	1. Unauthorized		1.1.1. Virtual Pri∨ate	1	3	Α	1.1.1. Consider	IT		
interfere with	network access	shutdown	Network				installing internal			
production	∨ia Internet and						firewalls or access			
	telnet to control		1.1.2. Authentication				control de∨ices			
	system						between the			
			1.1.3. Corporate				process control and			
			perimeter firewalls				business networks			
			1.1.4. Intrusion				1.1.2. Consider	IT		
			detection and				installing network			
			monitoring of firewalls				Intrusion Detection			
							System			
			1.1.5. Anti-∨irus							
			software on ser∨ers							
			and all desktops							
En∨ironmental	2 Unauthorized	2.1. Release of	2.1.1. Policy prohibits	4	3	С	2.1.1 Promote	OPS		
acti∨ist	modem	chemicals	unauthorized modems		Ŭ	Ĭ	awareness and			
creates an		onomicale.	anaaanonzoa moaomo				communication of			
environmental			2.1.2. Few indi∨iduals				policy on modems			
incident			have administrative							
Iniciaent			privileges to install				2.1.2. Review	lit		
			modems							
1			modems				frequency and type	J L		


LESSONS LEARNED - CSVA

Analyze corporate computer systems first and separately

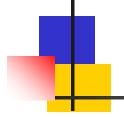
 Approaches familiar to plant personnel work best

Scenario-based

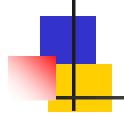


LESSONS LEARNED - CSVA (CONTD.)

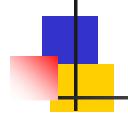
- Facility subdivision
 - Treat each manufacturing process since vulnerabilities and consequences of attacks will vary
 - Useful to take each control system and analyze the various parts of the process it controls
- Recognize commonalities between control systems and processes but also address differences
 - Avoid repetition



Copyright © 2005, Primatech Inc., All rights reserved.


LESSONS LEARNED - CSVA (CONTD.)

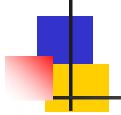
- Consider addressing unintentional attacks
 - Often mentioned by CSVA team members
 - May not have been addressed in PHAs
- Also, consider addressing physical attacks
 - Sometimes not addressed in physical SVAs or only to a limited extent
- Consider dividing insiders into "highly skilled" and "normal skilled" groups


LESSONS LEARNED – CSVA (CONTD.)

- Sometimes obvious countermeasures have not been taken, e.g.
 - Screening personnel
 - Firewalling control systems
 - Air gapping safety instrumented systems
 - Eliminating or controlling/securing modems
 - Using dumb terminals
 - Managing portable computer storage media
 - Etc.
- Initial self-assessment using checklists is valuable

LESSONS LEARNED - CSVA (CONTD.)

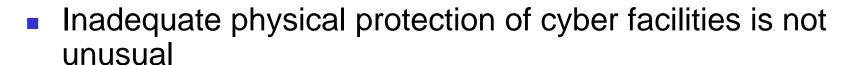
- Countermeasures must be acceptable to affected parties for them to be successful
 - E.g. process operators may be unwilling to use passwords
- Countermeasures must also be compatible with the existing facility
 - E.g. a desired new intrusion detection system may not be capable of implementation on a legacy system



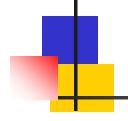
LESSONS LEARNED - CSVA (CONTD.)

- CSVAs create a new awareness of cyber security for participants
- Studies help companies develop policies for implementation of new systems

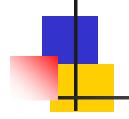
 Learn from mistakes found by performing CSVAs



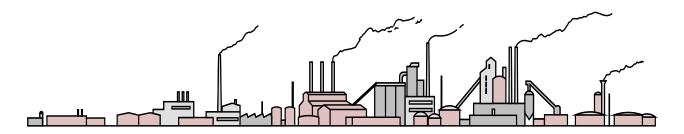
LESSONS LEARNED - RISKS

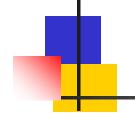

- Risk from internal threats is often high
 - Ease of access
 - Lack of controls
 - Knowledge of personnel
 - Target likelihood

- Importance of basic protection measures such as firewalls for control systems has been recognized
 - Still awaiting implementation in some cases



LESSONS LEARNED - ENABLERS

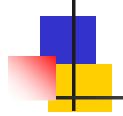

- Lack of awareness by management and plant personnel
- Infrequent changes in network access controls


 Use of unauthorized storage media, files and programs

SUMMARY

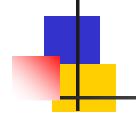
- Significant number of CSVA studies has been performed
- Many more studies will be performed in the future
- Lessons learned from initial studies should be shared
 - Help ensure efficient and effective future use of CSVA methods

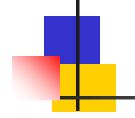
FURTHER INFORMATION


Technical papers on cyber and process security:

www.primatech.com

Contact info:


paulb@primatech.com


OTHER LESSONS LEARNED - CSVA

- Team membership
 - Process engineer and network / control system engineer are key participants
- Key reference documents
 - Process drawings and computer system diagram
- Use a standard format for CSVA worksheets and reports

OTHER LESSONS LEARNED – CSVA (CONTD.)

- Use standardized checklists to assist the analysis
 - Attackers
 - Intents
 - Vulnerabilities
 - Consequences
 - Countermeasures

OTHER LESSONS LEARNED – CSVA (CONTD.)

- List global countermeasures separately
- Risk ranking scheme should provide sufficient discrimination between scenarios
- Duration of studies averages a few hours per process