Printed: June 21, 2002, 2:53 PM Company: Safetech Location: Princeton, NJ Facility: Princeton PHA Method: HAZOP PHA Type: Initial

Process:

File Description: Chlorine Handling

Date:

Process Description:

Chemicals:

Purpose:

Scope:

Objectives:

Project Notes:

Filters: None

Company: Safetech Facility: Princeton

Session: (1) 07/02/00 Node: (1) Chlorine rail car Drawings: CLC/01-07-66 Parameter: Pressure

Intention: Normal operation is 100 - 150 psig. Target pressure is 125 psig.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	BY
More	Higher Pressure	1. Fire exposure	1.1. Potential overpressurization of rail car resulting in release of chlorine.	1.1.1. Rail cars provided with relief valve. 1.1.2. Rail cars insulated	1	4	4		:No recommendations	
			1.2. Potential rupture of the rail car if the rail car relief valve fails.	1.2.1. Location of rail car minimizes likelihood of exposure.	1	5	5		:No recommendations	
		2. High ambient temperature	2.1. Potential increase in pressure. Not likely to approach rated pressure of rail car.	2.1.1. Rail cars insulated 2.1.2. Location of rail car minimizes likelihood of exposure.	5	1	5		:No recommendations	
				2.1.3. Pressure indicator, PI-1.						
Less	Lower Pressure	3. Relief valve RV- 25 fails open	3.1. Potential exposure of personnel and potential offsite impact	3.1.1. Railcar emergency leak patch kit is available on site. 3.1.2. Pressure indicator, PI-1.	1	4	4		3.1.1. Consider conducting a failure modes and effects analysis (FMEA) of a typical pressure relief valve.	PWP
		4. Empty rail car	4.1. Delay in treating	4.1.1. Rail car is weighed upon receipt	5	3	9		:No further recommendations	
		5. Sudden change in ambient temperature	5.1. Potential for too low flow to the treatment system	5.1.1. Rail cars insulated	5	2	8		:No further recommendations	

Session: (1) 07/02/00 Node: (1) Chlorine rail car Drawings: CLC/01-07-66 Parameter: Composition

Revision: 0

Intention: Chlorine with less than 5 ppm moisture.

	GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	SL	R	REF#	RECOMMENDATIONS	BY
I	Other	Other Than	1. Supplier loads	1.1. Consequences	1.1.1. Analysis of	3 4	8		1.1.1. Consider	DSC
	Than	Composition	rail car with	will depend upon	shipment by				changing the SOP to	
			incorrect material	what other	supplier.				require a certificate of	
				materials could be					analysis be received	
				delivered in rail					with each rail car and	

PHAWorks by Primatech Inc.

Session: (1) 07/02/00 Node: (1) Chlorine rail car Drawings: CLC/01-07-66

Parameter: Composition

Revision: 0

Intention: Chlorine with less than 5 ppm moisture.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	ΒY
Other Than (cont.)	Other Than Composition (cont.)	1. Supplier loads rail car with incorrect material (cont.)	cars.	1.1.1. Analysis of shipment by supplier. (cont.)					be checked before accepting the rail car.	
As Well As	As Well As Composition (contaminatio n)	2. Rail car padded with incorrect material (e.g. moist air) by supplier	2.1. Moisture with chlorine will cause accelerated corrosion of system piping	2.1.1. Analysis of shipment by supplier.	3	4	8		:No further recommendations	
			2.2. Consequences will depend upon what other materials could be delivered in rail cars	2.2.1. As for 2.1.1	3	4	8		:No further recommendations	

Session: (1) 07/02/00

Node: (1) Chlorine rail car

Drawings: CLC/01-07-66

Parameter: Level

Intention: Normal railcar liquid level varies between a maximum of 80 % of capacity to as empty as practical.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
No	No Level	1. Rail car received empty	1.1. Delay in treating	1.1.1. Rail car is weighed upon receipt	5	4	1 0		:No recommendations	
		2. Leak in rail car or attached piping	2.1. Potential exposure of personnel and potential offsite impact	2.1.1. Chlorine gas sensors around rail car unloading station	3	4	8		:No recommendations	
				2.1.2. Emergency C kit available for rail car leaks						
More	Higher Level	3. Supplier overloads	3.1. Potential overpressure of rail car due to thermal expansion of material	3.1.1. Rail car weighed upon receipt	3	4	8		3.1.1. *Verify the scales are calibrated correctly	LSS

Company: Safetech Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	BY
No	No Flow	1. Control valve CV- 32 fails closed	1.1. Interruption to production operation due to deviation of Cl ₂ flow from setpoint causing control system to shut down process	1.1.1. Failing closed, or accidentally closing, a single valve will not result in overpressure since line is open to either end	4	4	9		:No recommendations	
				 1.1.2. Operator response to a shutdown of the system would be immediate 1.1.3. Limit switch provided on each valve which will indicate the valve is 						
				closed 1.1.4. Micromotion flow meter, FTLIQA						
			1.2. Potential overpressure of Cl ₂ piping if liquid-filled, closed piping heats up	1.2.1. All valves (ball valves) in liquid Cl_2 service are provided with a port to vent the ball cavity	3	4	8		:No recommendations	
				1.2.2. Rupture disk discharging to expansion tanks are provided for the section of the piping between - VLIQA and VLIQB - PCVGASC and PCVGASB (downstream of vaporizer)						
				1.2.3. Pressure transmitters provided on potentially trapped sections of piping between: - VRCA2 and VRCL - VRCB2 and						

Company: Safetech Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
No (cont.)	No Flow (cont.)	1. Control valve CV- 32 fails closed (cont.)	1.2. Potential overpressure of Cl ₂ piping if liquid-filled, closed piping heats up (cont.)	VRCM - VRCL/M and VLIQA - VLIQB and PCVGASC					:No recommendations (cont.)	
		2. Control system incorrectly activates shutdown for "rupture" condition	2.1. Potential overpressure of Cl ₂ piping if liquid filled, closed piping heats up	2.1.1. Rupture disk discharging to expansion tanks are provided for the section of the piping between - VLIQA and VLIQB - PCVGASC and PCVGASB	3	4	8		2.1.1. *Investigate the design of the rupture disks and expansion tanks and the pressure setting (375 psig) of the rupture disk 2.1.2. *Verify Chlorine Institute requirements	JBS
				(downstream of vaporizer)					for venting valves with design of existing valves	
				2.1.2. Failing closed, or accidentally closing, a single valve will not result in overpressure since line is open to either end						
				2.1.3. Limit switch provided on each valve which will indicate the valve is closed						
				2.1.4. Micromotion flow meter, FTLIQA						
		3. Control valve closes due to incorrect signal or setting	3.1. Interruption to production operation due to deviation of Cl_2 flow from setpoint causing control system to shut down process	3.1.1. Failing closed, or accidentally closing, a single valve will not result in overpressure since line is open to either end	4	4	9		:No further recommendations	
				3.1.2. Operator response to a shutdown of the system would be immediate						

Company: Safetech Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
No (cont.)	No Flow (cont.)	3. Control valve closes due to incorrect signal or setting (cont.)	3.1. Interruption to production operation due to deviation of Cl_2 flow from setpoint causing control system to shut down process (cont.)	3.1.3. Limit switch provided on each valve which will indicate the valve is closed3.1.4. Micromotion flow meter, FTLIQA					:No further recommendations (cont.)	
		4. Manual block valve is accidentally closed	4.1. Interruption to production operation due to deviation of Cl ₂ flow from setpoint causing control system to shut down process	4.1.1. Failing closed, or accidentally closing, a single valve will not result in overpressure since line is open to either end	4	4	9		:No further recommendations	
				4.1.2. Operator response to a shutdown of the system would be immediate						
				4.1.3. Limit switch provided on each valve which will indicate the valve is closed						
				4.1.4. Micromotion flow meter, FTLIQA						
		5. Filter plugged	5.1. Interruption to production operation due to deviation of Cl_2 flow from setpoint causing control system to shut down process	5.1.1. Operator response to a shut down of the system would be immediate 5.1.2. Micromotion flow meter, FTLIQA	4	2	7		:No further recommendations	
		6. Micromotion meter plugged	6.1. Interruption to production operation due to deviation of Cl_2 flow from setpoint causing control	6.1.1. Operator response to a shut down of the system would be immediate 6.1.2. Pressure	4	2	7		:No further recommendations	

Company: Safetech

Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

Intention: Flow approximately 1 - 5 lbs/min of liquid chlorine, at 100- 150 psig, from the railcar to the vaporizer.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	BY
No (cont.)	No Flow (cont.)	6. Micromotion meter plugged (cont.)	system to shut down process	transmitters before and after the meter					:No further recommendations (cont.)	
		7. Dip pipe (in railcar) plugged	7.1. Interruption to production operation due to deviation of Cl_2 flow from setpoint causing control system to shut down process	7.1.1. Operatorresponse to a shutdown of the systemwould beimmediate7.1.2. Micromotionflow meter, FTLIQA	4	2	7		:No further recommendations	
		8. Excess flow valve closed	8.1. Interruption to production operation due to deviation of Cl_2 flow from setpoint causing control system to shut down process	8.1.1. Failing closed, or accidentally closing, a single valve will not result in overpressure since line is open to either end	4	4	9		:No further recommendations	
				8.1.2. Operator response to a shutdown of the system would be immediate 8.1.3. Micromotion						
		9. Line or flex hose failure	9.1. Release of Cl ₂ to the atmosphere	9.1.1. Railcars inspected between each load by supplier 9.1.2. Chlorine gas sensors in the vicinity of the railcar and in the vaporizer	1	4	4		9.1.1. Consider alternatives to the present hanger arrangements to allow total insulating of the piping while minimizing external corrosion of the piping.	LDS
				9.1.3. Pressure along the piping is monitored by control system. If pressure differential exceeds 40-50 psig between 2 transmitters, control system will					9.1.2. Consider whether alternative materials of construction are practical which will provide better internal and external corrosion resistance	TLK

Company: Safetech Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
No (cont.)	No Flow (cont.)	9. Line or flex hose failure (cont.)	9.1. Release of Cl ₂ to the atmosphere (cont.)	initiate a "line rupture" shutdown which closes all valves on the liquid Cl ₂ piping 9.1.4. Piping pressure tested prior to each campaign					9.1.2. Consider whether alternative materials of construction are practical which will provide better internal and external corrosion resistance (cont.)	
				9.1.5. Normal preventive maintenance program for Cl ₂ piping is to perform non-destructive testing of wall thickness annually						
Less	Less Flow	10. Block valve (VRCG/H, PCVLIQA) to vent scrubber system open or passing	10.1. Potential interruption to production if flow deviates significantly from setpoint	10.1.1. Second block valve, PCVLIQB, on vent line from railcar station would also have to be accidentally open or passing	4	4	9		:No further recommendations	
				10.1.2. Position switches provided on all valves leading to the scrubber system from the liquid chlorine lines (VRCG, VRCH, PCVLIQA, PCVLIQB) which indicate if the valve moves off the fully closed position.						
			10.2. Potential release to the atmosphere if exceeds scrubber capacity or scrubber not operating	10.2.1. All the valves from the liquid chlorine lines to the scrubber (VRCG, VRCH, PCVLIQA, PCVLIQB) are interlocked closed by the control system when	1	4	4		:No further recommendations	

Company: Safetech Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
Less (cont.)	Less Flow (cont.)	10. Block valve (VRCG/H, PCVLIQA) to vent scrubber system open or passing (cont.)	10.2. Potential release to the atmosphere if exceeds scrubber capacity or scrubber not operating (cont.)	chlorine is in the system, preventing the operator from accidentally manually opening the valve from the console.					:No further recommendations (cont.)	
		11. Partial pluggage of any component or partially closed valve	11.1. Potential interruption to production if flow deviates significantly from setpoint	11.1.1. Pressure transmitter, PTRCF, on vent line from railcar station would increase if upstream valve(s) passing and downstream closed	4	2	7		:No further recommendations	
				11.1.2. Temperature indication, TTLIQA, on vent line to flash pot may indicate lower temperature due flashing of Cl ₂ liquid						
		12. Leak	12.1. Release of Cl ₂ to the atmosphere	12.1.1. Chlorine sensor provided near atmospheric vent from scrubber system 12.1.2. Control valve on Cl ₂ gas flow to reactor, FCVGASA, will open to attempt to maintain set flow	1	4	4		12.1.1. Review the best available means for periodic testing and/or examination of the chlorine liquid piping system to ensure the system integrity	PWP
	More Flow	13. N ₂ pressurization valve, VRCC/VRCD, opens during padding of railcar, and manual block on tubing left open, displacing liquid Cl ₂ in line with N ₂	13.1. Potential erratic flow due to presence of N ₂ in system. Potential overchlorination of product due to surge of chlorine ahead of N ₂ . Impact on product quality. Potential overloading of	13.1.1. Flow indication and control (FICGASA) on chlorine flow to reactor will throttle to maintain set flow 13.1.2. Position indicators on N ₂ valves (VRCC, VRCD) which	4	4	9		:No recommendations	

Worksheet

Revision: 0

Company: Safetech Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

Intention: Flow approximately 1 - 5 lbs/min of liquid chlorine, at 100- 150 psig, from the railcar to the vaporizer.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	BY
Less (cont.)	More Flow (cont.)	13. N ₂ pressurization valve, VRCC/VRCD, opens during padding of railcar, and manual block on tubing left open, displacing liquid Cl ₂ in line with N ₂ (cont.)	scrubber	indicates whenever the valve is off normally closed position.					:No recommendations (cont.)	
		14. Higher than normal pressure in rail car	14.1. Potential erratic flow due to presence of N_2 in system. Potential overchlorination of product due surge of chlorine ahead of N_2 . Impact on product quality. Potential overloading of scrubber	 14.1.1. Backup manual valve on N₂ line is normally closed except when pressure testing the piping. 14.1.2. Pressure monitoring of pipeline 	4	4	9		:No recommendations	
		15. Flow control valve, FCVGASA, opens wide due to incorrect signal or setting	15.1. Potential erratic flow due presence of N ₂ in system. Potential overchlorination of product due surge of chlorine ahead of N ₂ . Impact on product quality. Potential overloading of scrubber	15.1.1. Independent flow indication, FTLIQA, to allow operator to verify flow control reading	4	4	9		:No recommendations	
		16. Sudden clearing of a blockage	16.1. Potential erratic flow due to presence of N_2 in system. Potential overchlorination of product due surge of chlorine ahead of N_2 . Impact on product quality. Potential overloading of	16.1.1. Flow indication and control (FICGASA) on chlorine flow to reactor will throttle to maintain set flow	4	2	7		:No recommendations	

Page: 9 of 16

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

Intention: Flow approximately 1 - 5 lbs/min of liquid chlorine, at 100- 150 psig, from the railcar to the vaporizer.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
Less (cont.)	More Flow (cont.)	16. Sudden clearing of a blockage (cont.)	scrubber due to surge of chlorine	16.1.1. Flow indication and control (FICGASA) on chlorine flow to reactor will throttle to maintain set flow (cont.)					:No recommendations (cont.)	
Revers e	Reverse Flow	17. Blockage of the system downstream of the vaporizer	17.1. Vaporization of liquid in vaporizer will increase vaporizer pressure pushing liquid Cl ₂ back to rail car	17.1.1. Chlorine line is open back to the rail car preventing excessive pressure buildup 17.1.2. Pressure indication on vaporizer outlet, PTGASA	4	2	7		:No recommendations	
			17.2. No flow, sensed by FICGASA, will initiate a shutdown. Will close VLIQB and open VGASA to vent vaporizer to the scrubber	17.2.1. Flow indicators, FICGASA and FTLIQA, will indicate no flow 17.2.2. Line upstream of VLIQB is open to the railcar	4	2	7		:No recommendations	
		18. Rupture of the N ₂ pressurization line at the rail car when padding the rail car ail car	18.1. Release of Cl ₂ to atmosphere	18.1.1. Piping downstream of vaporizer is vented to the scrubber thru VGASA 18.1.2. Rupture disk and relief valve on vaporizer , discharging to catch pot T-22, if blockage is between vaporizer and VGASA. Additional capability to manually vent lines thru VGASC or PC/ULOA	1	5	5		:No recommendations	
		19. Failure of liquid chlorine line or flex hose	19.1. Release of Cl ₂ to the atmosphere	19.1.1. Piping downstream of vaporizer is vented	1	5	5		:No recommendations	

Company: Safetech

Facility: Princeton

Session: (1) 07/02/00

Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66 Parameter: Flow

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	sı	R	REF#	RECOMMENDATIONS	ΒY
Revers	Reverse Flow	19. Failure of liquid	19.1. Release of Cl ₂	to the scrubber				:No recommendations	
e	(cont.)	chlorine line or flex	to the atmosphere	thru VGASA				(cont.)	
(cont.)		hose (cont.)	(cont.)						
				19.1.2. Rupture disk					
				vanorizer					
				discharging to catch					
				pot T-22, if blockage					
				is between					
				vaporizer and					
				VGASA. Additional					
				capability to					
				thru VGASC or					
				PCVLIQA					
Other	Other Than	20. Failure of	20.1. Some flow of	20.1.1. Pressure	1 :	5 5		:No recommendations	
Than	Flow	rupture disk on	chlorine to the	indicator, PTLIQD,					
		liquid line	expansion tanks	on line to expansion					
				tanks					
			20.2. Potential loss	20.2.1. Chlorine gas	4 !	5 1		:No recommendations	
			of expansion	sensors in the		0			
			capacity if rupture	vicinity of the railcar					
			disk released,	and in the vaporizer					
			expansion tanks	building					
			rise in expansion	20.2.2 Prossure					
			tanks not observed	along the piping is					
			by operator.	monitored by control					
				system. If pressure					
				differential exceeds					
				40-50 psig between					
				2 transmitters,					
				initiate a "line					
				rupture" shutdown					
				which closes all					
				valves on the liquid					
				Cl ₂ piping					
				20.2.3. Piping					
				pressure lested					
				campaign					

Facility: Princeton

Session: (1) 07/02/00 Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66

Parameter: Pressure

Intention: Normal operating pressure is approximately 100-145 psig.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	BY
More	Higher Pressure	1. Fire exposure	1.1. Potential overpressurization of rail car resulting	1.1.1. Chlorine line insulated except at hangers	1	5	5		:No further recommendations	
			chlorine.	1.1.2. Chlorine line open to railcar and/or vaporizer						
				1.1.3. Rail cars insulated						
			1.2. Potential rupture of the rail car if the rail car relief valve fails.	1.2.1. Rail cars provided with relief valve	1	5	5		:No further recommendations	
				1.2.2. Location of rail car minimizes likelihood of exposure						
				1.2.3. Pressure indicator, PI-1						
		2. Steam exposure	2.1. Potential overheating if broken steam line discharges on chlorine line	2.1.1. Chlorine line insulated except at hangers	3	4	8		:No recommendations	
				2.1.2. Chlorine line open to railcar and/or vaporizer						
				2.1.3. Rail cars insulated						
		3. High ambient temperature increase in pressure. Not li to approach rate pressure of rail	3.1. Potential increase in pressure. Not likely	3.1.1. Chlorine line insulated except at hangers	5	1	5		:No further recommendations	
			pressure of rail car	3.1.2. Chlorine line open to railcar and/or vaporizer						
				3.1.3. Rail cars insulated						
		4. Change in ambient temperature after padding rail car	4.1. Potential for too low flow to the treatment system	4.1.1. Chlorine line insulated except at hangers	5	2	8		:No further recommendations	
		. č		4.1.2. Chlorine		1				

Company: Safetech Facility: Princeton

.

Session: (1) 07/02/00 Node: (2) Cl2 liquid to vaporizer

Drawings: CLC/01-07-66

Parameter: Pressure

Intention: Normal operating pressure is approximately 100-145 psig.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	ΒY
More (cont.)	Higher Pressure	4. Change in ambient	4.1. Potential for too low flow to the	line open to railcar and/or vaporizer					:No further recommendations	
	(cont.)	temperature after padding rail car (cont.)	treatment system (cont.)	4.1.3. Pressure indicator, PI-1 4.1.4. Rail cars					(cont.)	
Less	Lower Pressure	5. Leak in rail car or relief valve fails open	5.1. Potential exposure of personnel and potential offsite	insulated 5.1.1. Railcar emergency leak patch kit is available on site	1	5	5		:No further recommendations	
			Impact	5.1.2. Pressure indicator, PI-1						
		6. Empty rail car	6.1. Delay in treating	6.1.1. Rail car weighed upon receipt	4	4	9		:No further recommendations	
		7. Sudden change in ambient temperature	7.1. Potential for too low flow to the treatment system	7.1.1. Rail car weighed upon receipt	4	3	8		:No further recommendations	

Session: (1) 07/02/00 Node: (2) Cl2 liquid to vaporizer Drawings: CLC/01-07-66 Parameter: Composition Revision: 0

Intention: Chlorine to specification

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	SL	R	REF#	RECOMMENDATIONS	BY
As Well As	As Well As Composition	1. Water, or other agents, in line after cleaning	1.1. Potential for accelerated corrosion of the piping	1.1.1. Normal procedure for cleaning includes blowing the system dry with N ₂ after cleaning	3 4	8		1.1.1. Consider means of cleaning the chlorine piping system which do not involve the use of water or incompatible materials	LDS
				1.1.2. Training of maintenance personnel working on chlorine system					
		2. Use of non- compatible materials, such as hydrocarbon- containing greases, during maintenance of	2.1. Potential reaction possibly causing accelerated corrosion, fire or contaminants affecting product quality	2.1.1. Normal procedure for cleaning includes blowing the system dry with N ₂ after cleaning	3 4	8		2.1.1. Consider modifying the training program for maintenance personnel who may work on the chlorine system to include coverage of	TLK

Worksheet

Company: Safetech Facility: Princeton

Session: (1) 07/02/00 Node: (2) Cl2 liquid to vaporizer Drawings: CLC/01-07-66 Parameter: Composition Revision: 0

Intention: Chlorine to specification

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	sι	- F	R REF#	RECOMMENDATIONS	ΒY
As Well As (cont.)	As Well As Composition (cont.)	system	2.1. Potential reaction possibly causing accelerated corrosion, fire or contaminants affecting product quality (cont.)	2.1.2. Training of maintenance personnel working on chlorine system				incompatible materials	

Page: 14 of 16

Session: (1) 07/02/00 Node: (3) Cl2 vaporizer Drawings: CLC/01-07-66 Parameter: Flow Revision: 0

Intention: Vaporize 100-150 pounds per hour. Target is 125.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	S	L	R	REF#	RECOMMENDATIONS	BY
No	No Flow	1. Exit valve is in off position	1.1. Overpressurization of vaporizer	1.1.1. Relief valves on vessel	3	4	8		1.1.1. *Verify relief valves undergo periodic testing	LSS
		2. Entrance valve is in off position	2.1. Product down time	2.1.1. None	4	4	9		:No further recommendations	
			2.2. Excessive wear on pumps	2.2.1. Pumps have autoshutoff switches to prevent overheating	3	4	8		:No further recommendations	
As Well As	As Well As Flow	3. N ₂ purge stream valve is open	3.1. Impure product	3.1.1. Feed is tested when it is unloaded from rail car	4	4	9		3.1.1. Consider updating SOP to include a valve configuration flow sheet	LSS
		4. Impure Cl ₂ feed	4.1. Impure product	4.1.1. Feed is tested when it is unloaded from rail car	4	4	9		:No further recommendations	
			4.2. Side reaction causing exotherm.		3	4	8		:No further recommendations	

Session: (1) 07/02/00 Node: (3) Cl2 vaporizer Drawings: CLC/01-07-66 Parameter: Pressure Revision: 0

Intention: Vaporizer is intended to operate at 3 atm.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
More	Higher Pressure	1. Exit line from vaporizer plugged	1.1. Failure to provide adequate supply to reactor	1.1.1. Low flow alarm present	4	2	7		:No further recommendations	
			1.2. Pressure build up in vaporizer	1.2.1. Pressure rating on vaporizer exceeds that of the supply tanks	4	2	7		:No further recommendations	
		2. Chlorine supply line has a greater flow rate than designed	2.1. Pressure build up in vaporizer	2.1.1. Pressure rating on vaporizer exceeds that of the supply tanks	3	4	8		:No further recommendations	
Less	Lower Pressure	3. Supply line plugged	3.1. Loss of productivity due to low chlorine supply to reactor	3.1.1. Low flow alarm present.	4	2	7		3.1.1. *Check to see if this has ever been a problem	LSS
		4. Rupture in line exiting the vaporizer	4.1. Release of chlorine to atmosphere	4.1.1. Chlorine gas sensors in the area	1	5	5		4.1.1. Consider installing an automatic chlorine source	JBS

Session: (1) 07/02/00 Node: (3) Cl2 vaporizer Drawings: CLC/01-07-66 Parameter: Pressure Revision: 0

Intention: Vaporizer is intended to operate at 3 atm.

GW	DEVIATION	CAUSES	CONSEQUENCES	SAFEGUARDS	s	L	R	REF#	RECOMMENDATIONS	BY
Less (cont.)	Lower Pressure (cont.)	4. Rupture in line exiting the vaporizer (cont.)	4.1. Release of chlorine to atmosphere (cont.)	4.1.1. Chlorine gas sensors in the area (cont.)					shutdown if the vaporizer pressure drops below 1.5 atm.	
			4.2. Loss of reactant	t	4	5	1 0		:No further recommendations	
		5. Leak in vaporizer	5.1. Release of Cl ₂ to atmosphere	5.1.1. Chlorine gas sensors in the area	1	5	5		5.1.1. Consider implementing a periodic check of vaporizer to ensure there are no pressure leaks	LDS

PHAWorks by Primatech Inc.

Node 1: Chlorine rail car	1
Parameter: Pressure	1
Parameter: Composition	1
Parameter: Level	2
Node 2: Cl2 liquid to vaporizer	3
Parameter: Flow	3
Parameter: Pressure	12
Parameter: Composition	13
Node 3: Cl2 vaporizer	15
Parameter: Flow	15
Parameter: Pressure	15